Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Relations

- 8.1. Introduction to Relations
- **8.2 Properties of Relations**

1

Watch this lecture and download the slides

Course Page: http://www.jarrar.info/courses/DMath/

More Online Courses at: http://www.jarrar.info

Acknowledgement:

This lecture is based on (but not limited to) to chapter 8 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Relations

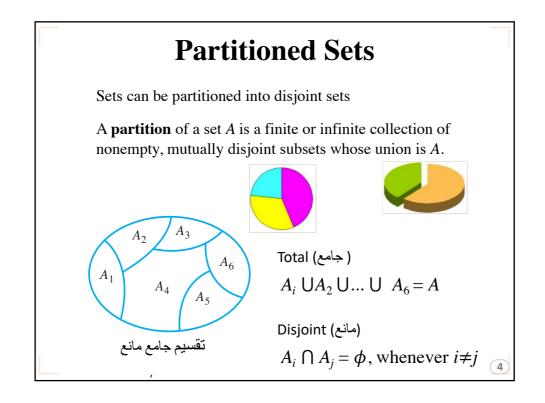
8.3 Equivalence Relations

In this lecture:

Part 1: Partitioned Sets

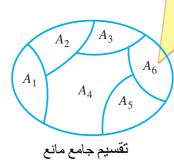
Part 2: Equivalence Relation

Part 3: Equivalence Class



Relations Induced by a Partition

A relation induced by a partition, is a relation between two element in the same partition.



(جامع) Total

 $A_i \cup A_2 \cup ... \cup A_6 = A$

(مانع) Disjoint

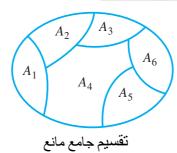
 $A_i \cap A_j = \phi$, whenever $i \neq j$

Relations Induced by a Partition

Definition

Given a partition of a set A, the **relation induced by the partition,** R, is defined on A as follows: For all $x, y \in A$,

> $x R y \Leftrightarrow$ there is a subset A_i of the partition such that both x and y are in A_i .



Total (جامع)

 $A_i \cup A_2 \cup ... \cup A_6 = A$

(مانع) Disjoint

 $A_i \cap A_j = \phi$, whenever $i \neq j$

Example

Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A: $\{0, 3, 4\}, \{1\}, \{2\}.$

Find the relation R induced by this partition.

Since $\{0, 3, 4\}$ is a subset of the partition,

```
0 R 3 because both 0 and 3 are in {0, 3, 4},
3 R 0 because both 3 and 0 are in {0, 3, 4},
0 R 4 because both 0 and 4 are in {0, 3, 4},
4 R 0 because both 4 and 0 are in {0, 3, 4},
```

3 R 4 because both 3 and 4 are in $\{0, 3, 4\}$, and

Also, 0 R 0 because both 0 and 0 are in {0, 3, 4} 3 R 3 because both 3 and 3 are in {0, 3, 4}, and

4 R 4 because both 4 and 4 are in $\{0, 3, 4\}$.

4R3 because both 4 and 3 are in $\{0, 3, 4\}$.

7

Example

Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A: $\{0, 3, 4\}, \{1\}, \{2\}.$

Find the relation R induced by this partition.

Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in $\{1\}$,

and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in $\{2\}$.

Hence

$$R = \{(0,0),(0,3),(0,4),(1,1),(2,2),(3,0), (3,3),(3,4),(4,0),(4,3),(4,4)\}.$$

Relations Induced by a Partition

Theorem 8.3.1

Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.

9

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Relations

8.3 Equivalence Relations

In this lecture:

☐ Part 1: Partitioned Sets

Part 2: **Equivalence Relation**

☐ Part 3: Equivalence Class

Equivalence Relation

علاقة تكافؤ

Definition

Let A be a set and R a relation on A. R is an **equivalence relation** if, and only if, R is reflexive, symmetric, and transitive.

→ The relation induced by a partition is an equivalence relation

11

Example

Let *X* be the set of all nonempty subsets of $\{1, 2, 3\}$. Then $X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Define a relation R on X as follows: For all A and B in X, $A R B \Leftrightarrow$ the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

by definition of *R*:

R is reflexive: ARA

R is Symmetric: BRA

R is transitive: ARC

Example

Let S be the set of all digital circuits with a fixed number n of inputs. Define a relation E on S as follows: For all circuits C1 and C2 in S,

 $C_1 \to C_2 \Leftrightarrow C_1$ has the same input/output table as C_2 .

E is reflexive: Suppose C is a digital logic circuit in S. [We must show that $C \to C$.] Certainly C has the same input/output table as itself. Thus, by definition of E, $C \to C$

E is symmetric: Suppose C_1 and C_2 are digital logic circuits in S such that $C_1 \to C_2$. By definition of E, since $C_1 \to C_2$, then C_1 has the same input/output table as C_2 . It follows that C_2 has the same input/output table as C_1 . Hence, by definition of E, $C_2 \to C_1$

E is transitive: Suppose C_1 , C_2 , and C_3 are digital logic circuits in S such that C_1 **E** C_2 and C_2 **E** C_3 . By definition of **E**, since C_1 **E** C_2 and C_2 **E** C_3 , then C_1 has the same input/output table as C_2 and C_2 has the same input/output table as C_3 . It follows that C_4 has the same input/output table as C_3 . Hence, by definition of **E**, C_4 **E** C_3

13

Example

Let L be the set of all allowable identifiers in a certain computer language, and define a relation R on L as follows: For all strings s and t in L,

 $s R t \Leftrightarrow$ the first eight characters of s equal the first eight characters of t.

R is reflexive: Let $s \in L$. Clearly s has the same first eight characters as itself. Thus, by definition of R, s R s.

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

Relations

8.3 Equivalence Relations

In this lecture:

☐ Part 1: Partitioned Sets

☐ Part 2: Equivalence Relation

☐ Part 3: Equivalence Class

(15

Equivalence Class

Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A, the **equivalence class of a**, denoted [a] and called the **class of a** for short, is the set of all elements x in A such that x is related to a by R.

In symbols:

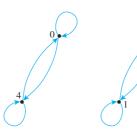
 $[a] = \{x \in A \mid x \mathrel{R} a\}$

for all $x \in A$, $x \in [a] \Leftrightarrow x R a$.

Example

Let $A = \{0,1,2,3,4\}$ and define a relation R on A as: $R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}.$

Find the distinct equivalence classes of R.



$$[0] = \{x \in A \mid x \ R \ 0\} = \{0, 4\}$$

$$[1] = \{x \in A \mid x R 1\} = \{1, 3\}$$

$$[2] = \{x \in A \mid x R 2\} = \{2\}$$

$$[3] = \{x \in A \mid x R 3\} = \{1, 3\}$$

$$[4] = \{x \in A \mid x R 4\} = \{0, 4\}$$

$$[0] = [4]$$
 and $[1] = [3]$.

17

Equivalence Class

Lemma 8.3.2

Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A. If a R b, then [a] = [b].

Lemma 8.3.3

If A is a set, R is an equivalence relation on A, and a and b are elements of A, then either $[a] \cap [b] = \emptyset$ or [a] = [b].

Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R. A representative of the class S is any element a such that [a] = S.

Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set \mathbb{Z} of all integers. That is, for all integers m and n,

$$m R n \Leftrightarrow 3 \mid (m-n) \Leftrightarrow m \equiv n \pmod{3}$$
.

Describe the distinct equivalence classes of R.

For each integer a,

$$[a] = \{x \in \mathbf{Z} \mid x \ R \ a\}$$

$$= \{x \in \mathbf{Z} \mid 3 \mid (x - a)\}$$

$$= \{x \in \mathbf{Z} \mid x - a = 3k, \text{ for some integer } k\}.$$

Therefore

$$[a] = \{x \in \mathbb{Z} \mid x = 3k + a, \text{ for some integer } k\}.$$

19

Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set **Z** of all integers. That is, for all integers m and n,

$$mRn \Leftrightarrow 3 \mid (m-n) \Leftrightarrow m \equiv n \pmod{3}$$
.

Describe the distinct equivalence classes of R.

[0] =
$$\{x \in \mathbb{Z} \mid x = 3k + 0, \text{ for some integer } k\}$$

= $\{x \in \mathbb{Z} \mid x = 3k, \text{ for some integer } k\}$
= $\{\dots - 9, -6, -3, 0, 3, 6, 9, \dots\},$
[1] = $\{x \in \mathbb{Z} \mid x = 3k + 1, \text{ for some integer } k\}$
= $\{\dots - 8, -5, -2, 1, 4, 7, 10, \dots\},$
[2] = $\{x \in \mathbb{Z} \mid x = 3k + 2, \text{ for some integer } k\}$
= $\{\dots - 7, -4, -1, 2, 5, 8, 11, \dots\}.$

Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set \mathbb{Z} of all integers. That is, for all integers m and n,

$$mRn \Leftrightarrow 3 \mid (m-n) \Leftrightarrow m \equiv n \pmod{3}$$
.

Describe the distinct equivalence classes of R.

The distinct equivalence classes:

 $\{x \in \mathbb{Z} \mid x = 3k, \text{ for some integer } k\},\$

 ${x \in \mathbf{Z} \mid x = 3k + 1, \text{ for some integer } k},$

 ${x \in \mathbf{Z} \mid x = 3k + 2, \text{ for some integer } k}.$

21

Exercise

Let *A* be the set of all ordered pairs of integers for which the second element of the pair is nonzero. Symbolically,

$$A = \mathbf{Z} \times (\mathbf{Z} - \{0\}).$$

Define a relation R on A as follows: For all $(a, b), (c, d) \in A$, $(a,b)R(c,d) \Leftrightarrow ad=bc$.

Describe the distinct equivalence classes of R

For example, the class (1,2):

$$[(1,2)] = \{(1,2), (-1,-2), (2,4), (-2,-4), (3,6), (-3,-6), \ldots\}$$

since
$$\frac{1}{2} = \frac{-1}{-2} = \frac{2}{4} = \frac{-2}{-4} = \frac{3}{6} = \frac{-3}{-6}$$
 and so forth.